1.5em 0pt

## Bayesian apative designs for clinical trials

Yeojin Joo

May 28, 2019

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

### Introduction

- Bayesian adaptive design
  - proposed for a comparative two-armed clinical trial using decision-theoretic approaches.
  - At each interim analysis, the decision to terminate or to continue the trial is based on the expected loss function.
- In Berry&Ho(1988) and Lewis&Berry(1994), Bayesian designs are compared with frequentist group sequential designs using decision-theoretic approaches.
- Studies by Eales&Jesson(1992), Cressie&Biele(1994) and Barber&Jennison(2002) search for optimal group sequential designs under various settings using Bayesian decision-theoretic approaches.
- The maximum sample size/block size is predetermined for all these methods.

## Introduction

In this paper,

- (1) Generalized the Bayesian decision-theoretic approach by allowing the maximum sample size to be random
- (2) Use loss functions that explicitly quantify the costs caused by false-positive and false-negative decisions.
  - maintain the desired frequentist properties such as type I and II error rates.

(3) Simultaneously consider efficacy, futility, and cost in the decision making.

- ► X<sub>T</sub> : the treatment response
- $X_C$  : the control response
- ▶ 2B<sub>i</sub> : the block size at each stage where B<sub>i</sub> is the sample size for each treatment arm (i = 1, 2, ...)

- ►  $\bar{X}_{T_i}, \bar{X}_{C_i}$ : the observed means of the *ith* block for the two arms.
- Let θ be the parameter of interest, and let
   X<sub>i</sub> = X
  <sub>Ti</sub> X
  <sub>Ci</sub> ~ F(.|θ), ∫<sup>∞</sup><sub>-∞</sub> x dF(x|θ) = θ
   prior π(θ) with a prior mean of E(θ|π) = δ

$$H_0: \theta \leq \theta_0$$
 versus  $H_1: \theta > 0$ 

- If θ > 0, there is insufficient information to indicate a preference for any one of the treatments.
- A : actions of accepting the null hypothesis.
- R : actions of rejecting the null hypothesis.

$$L(\theta, A) = \begin{cases} 0, & \text{if } \theta \le \theta_0 \\ \mathsf{K}_1, & \text{if } \theta > \theta_0 \end{cases} \quad L(\theta, R) = \begin{cases} \mathsf{K}_0, & \text{if } \theta \le 0 \\ 0, & \text{if } \theta > 0 \end{cases}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- ▶ Let X<sub>j</sub> = {X<sub>1</sub>,...,X<sub>j</sub>} define the accumulated data up to step j
- ► Define the  $\sigma$ -algebra  $\mathcal{F}_j = \sigma(\mathcal{X}_j)$ ,  $E\{L(\theta, A|\mathcal{F}_j)\} = K_1 pr(\theta > \theta_0|\mathcal{F}_j)\}$  $E\{L(\theta, R|\mathcal{F}_j)\} = K_0 pr(\theta \le 0|\mathcal{F}_j)$
- ▶ Given the data up to the *jth* stage, a critical region *R<sub>j</sub>*,

$$R_j = \{\mathcal{X}_j : \frac{pr(\theta \le 0|\mathcal{F}_j)}{pr(\theta \le \theta_0|\mathcal{F}_j)} \le \frac{K_1}{K_0}\}, j = 1, 2, \dots$$

- ▶ *K*<sub>2</sub> : the unit cost of enrolling a patient into the trial
- $\blacktriangleright L_{stop}(\mathcal{X}_j) = 2K_2 \sum_{i=1}^{j} B_i + min[E\{L(\theta, A) | \mathcal{F}_j\}, E\{L(\theta, R) | \mathcal{F}_j\}]$
- $L_{cont}(\mathcal{X}_j) = 2K_2 \sum_{i=1}^{j+1} B_i + E(\min[E\{L(\theta, A) | \mathcal{F}_{(j+1)}\}, E\{L(\theta, R) | \mathcal{F}_{(j+1)}\}]|\mathcal{F}_j)$

- To search for the optimal adaptive design that minimizes the expected loss, use the following two-step strategy.
- Step 1. If  $L_{stop}(\mathcal{X}_j) \leq L_{cont}(\mathcal{X}_j)$ , terminate the trial, and the maximum block size is j. Then if the accumulated data  $\mathcal{X}_j$  is in the rejection region  $R_j$ , we conclude that the new treatment is more effective than the control.
- Step 2. If  $L_{stop}(\mathcal{X}_j) > L_{cont}(\mathcal{X}_j)$ , continue to observe the (j + 1)th block and repeat Step 1 and 2.
  - The total number of blocks to be observed in the trial, denoted by M , P(M < ∞|θ) = 1. (by the martingale convergence theorem)

Connections with the frequentist designs

- ► The design parameters, K<sub>i</sub>, (i = 0, 1, 2) allow us to control the probabilities of type I and type II errors.
- ▶ If  $\theta_0 = 0$ , the probability of making a false-positive conclusion at stage j is  $Pr(R_j | \theta = 0)$ , where

$$R_{j} = \{\mathcal{X}_{j} : \frac{pr(\theta \leq 0|\mathcal{X}_{j})}{pr(\theta > 0|\mathcal{X}_{j})} \leq \frac{K_{1}}{K_{0}}\} = \{\mathcal{X}_{j} : pr(\theta \leq 0|\mathcal{X}_{j}) \leq \frac{K_{1}}{K_{0}+K_{1}}\}$$

• If all related density functions satisfy the regularity conditions,  $\pi(\theta|\mathcal{X}_j) \sim N(\delta_j, s_j^2)$  asymptotically.

▶  $pr(\theta \leq 0 | \mathcal{X}_j)$  is asymptotically distributed as  $\Phi(-\delta_j/s_j)$ , where  $\Phi$  is the standard normal cdf.

#### Connections with the frequentist designs

► Under θ = θ<sub>0</sub> = 0, δ<sub>j</sub>/s<sub>j</sub> converges in distribution to Z.(Hartigan, 1983, Ch.11) Therefore,

$$pr(\theta \le 0|\mathcal{X}_j) \xrightarrow{d} \Phi(Z)$$
  
• Since  $\Phi(Z) \sim U(0, 1)$ , rejection region  $R'_j$  under  $\theta = 0$  is  
 $pr(R'_j|\theta = 0) = pr(pr(\theta \le 0|\mathcal{X}_j)|\theta = 0) \le \frac{K_1}{K_0 + K_1})$   
 $\rightarrow pr\{\Phi(Z) \le \frac{K_1}{K_0 + K_1}\} = \frac{K_1}{K_0 + K_1}$ 

- ► For  $\theta_0 > 0$ ,  $R_j$  shrinks as  $\theta_0$  increases. Therefore,  $\limsup_{j\to\infty} pr(R_j|\theta = 0) \le \frac{\kappa_1}{\kappa_0 + \kappa_1}$
- ► If the overall sample size is sufficiently large, R<sub>j</sub> depends on K<sub>0</sub>/K<sub>1</sub>
- For a given type I error rate,  $\alpha$

$$\mathcal{K}_0/\mathcal{K}_1 = (1-lpha)/lpha$$
, if we let  $\mathcal{K}_1/(\mathcal{K}_0+\mathcal{K}_1) = lpha$ 

## Connections with the frequentist designs

- ▶ High value of *K*<sup>1</sup> implies that future patients might benefit from a new effective treatment.
- ▶ However, the new treatment may be superseded within a few years, which would reduce the 'value' of the treatment, K<sub>1</sub>.
- It is difficult explicitly to build this concern prospectively into a trial design.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 Derive a strict uppder boundary for continuous outcomes with a normal distribution.

• 
$$X_i = \bar{X}_{T_i} - \bar{X}_{C_i} \sim N(\theta, \sigma^2/B_i)$$

- ►  $\theta \sim N(\delta, \sigma^2/B_0)$ , where  $B_0$  can be interpreted as a 'sample size' reflected by the prior information,  $X_0 = \delta$
- After data from block j are observed,  $\theta | \mathcal{X}_j \sim n(\delta_j, s_j^2)$  where,

$$\delta_j = \frac{\sum_{i=0}^{j} B_i X_i}{\sum_{i=0}^{j} B_i}, \quad s_j^2 = \frac{\sigma^2}{\sum_{i=0}^{j} B_i}$$

• Then rejection region 
$$R_j$$
, is given by  
 $R_j = \{\mathcal{X}_j : \frac{pr(\theta \le 0|\mathcal{F}_j)}{pr(\theta \le \theta_0|\mathcal{F}_j)} \le \frac{K_1}{K_0}\} = \{\mathcal{X}_j : \frac{\Phi(-\delta_j/s_j)}{1-\Phi\{(\theta_0 - \delta_j)/s_j\}} \le \frac{K_1}{K_0}\}$   
• Since  $\frac{\Phi(-\delta_j/s_j)}{1-\Phi\{(\theta_0 - \delta_j)/s_j\}}$  is a decreasing function of  $\delta_j$ , and  
 $\sup_{\delta_j} \frac{\Phi(-\delta_j/s_j)}{1-\Phi\{(\theta_0 - \delta_j)/s_j\}} = \infty$ ,  $\inf_{\delta_j} \frac{\Phi(-\delta_j/s_j)}{1-\Phi\{(\theta_0 - \delta_j)/s_j\}} = 0$   
• Therefore,  $\exists ! c_j$  such that  $R_j = \{\mathcal{X}_j : \delta_j \ge c_j\}$  or, equivalently,  
 $c_j = \arg\{x : \frac{\Phi(-\delta_j/s_j)}{1-\Phi\{(\theta_0 - \delta_j)/s_j\}} - \frac{K_1}{K_0} = 0\}$ 

• Under the null  $\theta = 0$ ,  $-\frac{\delta_j}{s_j} \sim N(-\frac{n_0\delta}{\sigma\sqrt{n_j}}, \frac{n_j - n_0}{n_j})$ 

The probability of rejecting the null hypotheses at the *jth* interim analysis is

$$pr(R_j|\theta=0) = pr(\delta_j/s_j > h|\theta=0) = \mathbf{\Phi}\left\{\frac{h\sigma\sqrt{n_j+n_0\delta}}{\sigma\sqrt{n_j-n_0}}\right\}$$

•  $\Phi\left\{\frac{h\sigma\sqrt{n_j+n_0\delta}}{\sigma\sqrt{n_j-n_0}}\right\}$  increases when  $\sqrt{n_j} \leq -h\sigma/\delta$ , decreases when  $\sqrt{n_j} \geq -h\sigma/\delta$ 

When  $\sqrt{n_i} \leq -h\sigma/\delta$ , • The function has maximum at  $\sqrt{n_i} = -h\sigma/\delta$ , therefore  $\sup_{n_i} \Phi\{\frac{h\sigma\sqrt{n_j}+n_0\delta}{\sigma\sqrt{n_j-n_0}}\} \le \Phi\{\frac{\sqrt{(h^2\sigma^2-n_0\delta^2}}{\sigma\sqrt{n_i-n_0}}\}$ •  $h^2 \sigma^2 - n_0 \delta^2 \ge 0$ , as long as  $n_0 \le n_i$ • Therefore,  $h_1 = -(z_{\alpha}^2 + \frac{n_0 \delta^2}{z^2})^{\frac{1}{2}}$ When  $\sqrt{n_i} > -h\sigma/\delta$ , • since  $n_j \ge n_1$ , for  $j \ge 1$ , When  $\sqrt{n_1} > -h\sigma/\delta$  $\sup_{n} \Phi\{\frac{h\sigma\sqrt{n_j}+n_0\delta}{\sigma\sqrt{n_j-n_0}}\} \le \Phi\{\frac{h\sigma\sqrt{n_1}+n_0\delta}{\sigma\sqrt{n_1-n_0}}\}$ • Therefore,  $h_2 = \frac{z_{1-\alpha}\sigma\sqrt{n_1-n_0-n_0\delta}}{\sigma\sqrt{n_1}}$ 

・ロト・日本・日本・日本・日本・日本・日本

For any given significance level  $\alpha$ , we can determine  $K_0/K_1$ , based on this upper bound:

$$\frac{\kappa_0}{\kappa_1} = \begin{cases} \{1 - \mathbf{\Phi}(h_1)\} / \mathbf{\Phi}(h_1), & \text{if } \sqrt{n_1} \le \sqrt{\{(\sigma/\delta)^2 z_\alpha^2 + n_0\}} \\ \{1 - \mathbf{\Phi}(h_2)\} / \mathbf{\Phi}(h_2), & \text{if } \sqrt{n_1} > \sqrt{\{(\sigma/\delta)^2 z_\alpha^2 + n_0\}} \end{cases}$$

with  $K_0/K_1$  defined above,

$$\sup_{j} pr(R_j | \theta = 0) \leq \alpha$$

・ロト ・西ト ・ヨト ・ヨー うらぐ

- ► The loss incurred in terminating the trial at the *jth* stage is  $L_{stop}(\mathcal{X}_j) = 2K_2 \sum_{i=1}^{j} B_i + min[K_1\{1 - \Phi(-\frac{\delta_j}{s_j})\}, K_0 \Phi(-\frac{\delta_j}{s_j})]$
- ▶ The relevant predictive distribution of X<sub>j+1</sub> is

$$X_{j+1}|\mathcal{X}_j \sim N(\delta_j, s_j^2 + rac{\sigma^2}{B_{j+1}})$$

Compute the posterior mean and posterior variance of θ recursively as

$$\delta_{j+1} = \frac{n_j \delta_j + B_{j+1} x_{j+1}}{n_j + B_{j+1}}, \quad s_{j+1}^2 = \frac{\sigma^2}{n_j + B_{j+1}}$$

 Then, the predicted loss of continuing and observing one more block is,

 $L_{cont}(\mathcal{X}_j) = 2K_2\sum_{i=1}^{j+1}B_i$ 

$$+ \int_{-\infty}^{+\infty} \min[K_1\{1 - \Phi(-\frac{\delta_{j+1}}{s_{j+1}})\}, K_0 \Phi(-\frac{\delta_{j+1}}{s_{j+1}})] d\Phi\{\frac{x_{j+1} - \delta_j}{(s_j^2 + \sigma^2/B_{j+1})^2}\}$$

$$\blacktriangleright X_{T_i}|p_t \sim B(B_i, p_t), \quad X_{C_i}|p_c \sim B(B_i, p_c)$$

 $\blacktriangleright p_t \sim Beta(a_t, b_t), \quad p_c \sim Beta(a_c, b_c)$ 

• The difference in efficacy is  $\theta = p_t - p_c$ , and the density function for  $\theta$  is

$$egin{aligned} &\pi( heta|a_t,b_t,a_c,b_c)\ &= egin{cases} \int_{- heta}^1 q( heta+x,a_t,b_t)q(x,a_c,b_c)dx, & ext{if}-1< heta<0,\ &\int_{0}^{1- heta}q( heta+x,a_t,b_t)q(x,a_c,b_c)dx, & ext{if}-0< heta<1 \end{aligned}$$

where q(x, a, b) is the density function of the beta distribution.

- At the end of the *jth* stage, the sufficient statistic denoted by  $(s_{t_j}, f_{t_j}, s_{c_j}, t_{c_j}), \text{ where } s_{t_j} + f_{t_j} = s_{c_j} + f_{c_j} = \sum_{i=1}^{j} B_i$
- s<sub>tj</sub>, f<sub>tj</sub>: the total numbers of successes and failures observed on the treatment arm up to stage j
- ► s<sub>cj</sub>, f<sub>cj</sub> : the total numbers of successes and failures observed on the control arm up to stage j

► The expected losses for the two decisions, A and R, are  $E\{L(\theta, A) | \mathcal{X}_j\} = K_1 \int_{\theta_0}^1 \pi(\theta | \mathbf{a}_{t_j}, \mathbf{b}_{t_j}, \mathbf{a}_{c_j}, \mathbf{b}_{c_j}) d\theta,$   $E\{L(\theta, R) | \mathcal{X}_j\} = K_0 \int_{-1}^0 \pi(\theta | \mathbf{a}_{t_j}, \mathbf{b}_{t_j}, \mathbf{a}_{c_j}, \mathbf{b}_{c_j}) d\theta$ 

where

$$a_{t_j} = a_t + s_{t_j}, \ b_{t_j} = b_t + f_{t_j}, \ a_{c_j} = a_c + s_{c_j}, \ b_{c_j} = b_t + f_{c_j}$$

Transform the integrals,

$$E\{L(\theta, A)|\mathcal{X}_{j}\} = K_{1} \int_{0}^{1-\theta} q(x, a_{c_{j}}, b_{c_{j}})\{1 - Q(\theta_{0} + x, a_{t_{j}}, b_{t_{j}})\}dx$$
$$E\{L(\theta, R)|\mathcal{X}_{j}\} = K_{0} \int_{0}^{1} q(x, a_{c_{j}}, b_{c_{j}})Q(x, a_{t_{j}}, b_{t_{j}})dx$$

where Q(., a, b) is the cumulative distribution function of Beta(a, b)

- ► The predictive distribution of  $s_{t_{j+1}}, s_{c_{j+1}}$  given  $s_{t_j}, s_{c_j}$ ,  $pr(s_{t_{j+1}}, s_{c_{j+1}} | s_{t_j}, s_{c_j}) =$   $\binom{B_{j+1}}{s_{t_{j+1}} - s_{t_j}} \binom{B_{j+1}}{\beta(a_{t_j}, b_{t_j})} \frac{\beta(a_{c_{j+1}}, b_{c_{j+1}})}{\beta(a_{c_j}, b_{c_j})}$
- It is possible to derive an absolute upper boundary for binary outcomes to control the type I error rate, as in the case of normal outcomes.

- Through Monte Carlo simulations, compare the performance of the proposed design with the existing group sequential designs, including
  - (1) the frequentist designs of Pocock (1977)
  - (2) O'BrienFleming (1979)
  - (3) the adaptive self-designing trial of Shen Fisher (1999)
- Pocock and O'Brien-Fleming trials predetermine the maximum sample size.
- ▶ 'Bayes Adapt I' :  $K_0/K_1$  is determined by the equation on p.16

▶ 'Bayes Adapt II' : K<sub>0</sub>/K<sub>1</sub> is determined by the equation on p.10

Table 1: Monte Carlo simulation. The comparison of power and average sample number between the Bayesian designs and other group sequential designs with one-sided  $\alpha = 0.025$ , and true  $\theta = 0$  at null and  $\theta = 0.5$  under the alternative

|                |     |       | B = 6          |                   |               | B = 8 |                         |                   |               |
|----------------|-----|-------|----------------|-------------------|---------------|-------|-------------------------|-------------------|---------------|
| Design         | δ   | â     | $ASN_{\alpha}$ | $1 - \hat{\beta}$ | $ASN_{\beta}$ | â     | $\mathrm{ASN}_{\alpha}$ | $1 - \hat{\beta}$ | $ASN_{\beta}$ |
| Pocock         | 0.4 | 0.025 | 163.6          | 0.984             | 74.4          | 0.025 | 156-3                   | 0.977             | 78.8          |
| OBF            | 0.4 | 0.022 | 68.6           | 0.985             | 84.4          | 0.025 | 70-9                    | 0.984             | 83.7          |
| Self-designing | 0.4 | 0.012 | 84.4           | 0.911             | 87.0          | 0.010 | 92-9                    | 0.931             | 90.0          |
| Bayes Adapt I  | 0.4 | 0.014 | 49.7           | 0.934             | 72.7          | 0.012 | 59-3                    | 0.959             | 79.5          |
| Bayes Adapt II | 0.4 | 0.016 | 51.1           | 0.938             | 72.0          | 0.017 | 60.4                    | 0.961             | 78.3          |
| Pocock         | 0.5 | 0.025 | 105.6          | 0.911             | 66.6          | 0.024 | 109.8                   | 0.924             | 71.7          |
| OBF            | 0.5 | 0.024 | 47.7           | 0.929             | 65.5          | 0.024 | 49.7                    | 0.937             | 69.1          |
| Self-designing | 0.5 | 0.013 | 62.5           | 0.888             | 78.5          | 0.014 | 71.4                    | 0.918             | 83.9          |
| Bayes Adapt I  | 0.5 | 0.012 | 45.8           | 0.921             | 69.4          | 0.016 | 54-4                    | 0.946             | 75.5          |
| Bayes Adapt II | 0.5 | 0.018 | 47.8           | 0.930             | 68.2          | 0.017 | 54-9                    | 0.951             | 73.7          |
| Pocock         | 0.6 | 0.026 | 70.6           | 0.766             | 55.8          | 0.025 | 78-7                    | 0.817             | 62·2          |
| OBF            | 0.6 | 0.025 | 35.0           | 0.810             | 50.8          | 0.214 | 37.3                    | 0.848             | 55.9          |
| Self-designing | 0.6 | 0.013 | 51.9           | 0.836             | 70.3          | 0.014 | 59-9                    | 0.869             | 74.6          |
| Bayes Adapt I  | 0.6 | 0.013 | 42.0           | 0.905             | 66.6          | 0.013 | 49-2                    | 0.928             | 71.7          |
| Bayes Adapt II | 0.6 | 0.020 | 45.3           | 0.914             | 64.6          | 0.020 | 51.3                    | 0.942             | 69.7          |
| Pocock         | 0.7 | 0.025 | 47.4           | 0.598             | 42.7          | 0.026 | 47.6                    | 0.614             | 45.2          |
| OBF            | 0.7 | 0.024 | 26.7           | 0.670             | 38.1          | 0.023 | 28.9                    | 0.668             | 39.9          |
| Self-designing | 0.7 | 0.014 | 43.9           | 0.761             | 61.3          | 0.014 | 49-3                    | 0.772             | 65.1          |
| Bayes Adapt I  | 0.7 | 0.012 | 39.8           | 0.889             | 63.9          | 0.015 | 45.9                    | 0.920             | 68.9          |
| Bayes Adapt II | 0.7 | 0.022 | 42.7           | 0.907             | 61.6          | 0.021 | 48-9                    | 0.932             | 66.1          |

ASN<sub>2</sub> and ASN<sub>3</sub> are average sample numbers under  $\theta = 0$  and  $\theta = 0.5$ , respectively. OBF, O'Brien– Fleming design. Bayes Adapt I,  $K_0/K_1$  is determined by formula (2.8); Bayes Adapt II,  $K_0/K_1$  satisfies the equation  $K_1/(K_1 + K_0) = \alpha$ ; for both designs,  $K_2/K_1 = 0.1^4 B\delta^3$ .

- 'Bayes Adapt I' is more conservative than 'Bayes Adapt II'.
- The type 1 error rates of the proposed Bayesian designs are similar to that of the self-designing trial, but no additional futility stopping rule is required.
- The frequentist group sequential designs with the fixed maximum sample sizes lead to a substantial loss of power.
- The Bayesian-designs hold advantages over the self-designing trial in terms of both power and average sample number.



Fig. 1: Monte Carlo simulation. The histogram of the number of blocks as relative frequencies for (a) the Pocock design, (b) the O'Brien–Fleming design and (c) the Bayesian adaptive design, with  $\theta = 0.6$ ,  $\delta = 0.6$  and B = 12 for all the designs.

Without a constraint on the maximum number of blocks, more than 75% of the trials using the proposed adaptive design are terminated with the number of blocks being four or fewer.

Table 2: Monte Carlo simulation. The comparison of power and average sample number between the proposed Bayesian optimal design and fixed sample design for binary responses: priors are Be(1, 1),  $\delta = 0.4$ ,  $p_t = p_c = 0.5$  for  $H_0$ ,  $p_t = 0.5 + \theta/2$  and  $p_c = 0.5 - \theta/2$  for  $H_1$ . The ratio  $K_0/K_1$  is 19, which satisfies the equation  $K_1/(K_1 + K_0) = \alpha$  for  $\alpha = 0.05$ , and the ratio  $K_2/K_1$  is 0.005

| θ    | Prope             | Fixed sample design |                  |      |                   |     |
|------|-------------------|---------------------|------------------|------|-------------------|-----|
|      | B = 16            |                     | B = 24           |      |                   | ASN |
|      | pr(reject $H_0$ ) | ASN                 | $pr(reject H_0)$ | ASN  | pr(reject $H_0$ ) |     |
| 0.40 | 0.921             | 46.0                | 0.973            | 55.0 | 0.906             | 46  |
| 0.36 | 0.874             | 50.4                | 0.945            | 57.3 | 0.835             | 46  |
| 0.32 | 0.801             | 52.3                | 0.875            | 60.9 | 0.741             | 46  |
| 0.28 | 0.710             | 54.0                | 0.812            | 64.4 | 0.631             | 46  |
| 0.00 | 0.047             | 40.2                | 0.047            | 56.2 | 0.050             | 46  |

ASN, average sample number.

Table 3: Monte Carlo simulation. The comparison of power and average sample number between the proposed Bayesian optimal design and the Lewis-Berry Bayesian design for binary responses:  $p_t = p_c = 0.5$  for  $H_0$ ,  $p_t = 0.5 + \delta/2$  and  $p_c = 0.5 - \delta/2$  for  $H_1$ . The ratio  $K_0/K_1$  is 19, which satisfies the equation  $K_1/(K_1 + K_0) = \alpha$  for  $\alpha = 0.05$ ,  $K_2/K_1 = 0.005$  for  $\delta = 0.4$ , and  $K_2/K_1 = 0.00003$  for  $\delta = 0.2$ 

|          |     |    | Proposed Bayesian design II |                |                   |               | Lewis-Berry design |                               |                   |               |
|----------|-----|----|-----------------------------|----------------|-------------------|---------------|--------------------|-------------------------------|-------------------|---------------|
| Priors   | δ   | В  | â                           | $ASN_{\alpha}$ | $1 - \hat{\beta}$ | $ASN_{\beta}$ | â                  | $\operatorname{ASN}_{\alpha}$ | $1 - \hat{\beta}$ | $ASN_{\beta}$ |
| Be(1, 1) | 0.4 | 16 | 0.047                       | 40.2           | 0.921             | 46.0          | 0.039              | 42.1                          | 0.946             | 44.3          |
|          | 0.5 | 16 | 0.030                       | 131.4          | 0.926             | 171.7         | 0.035              | 155-9                         | 0.960             | 161.4         |
| Be(2, 2) | 0.4 | 16 | 0.030                       | 40.6           | 0.942             | 48.6          | 0.027              | 38.3                          | 0.907             | 46.2          |
|          | 0.2 | 16 | 0.026                       | 125.5          | 0.917             | 171.9         | 0.034              | 152.3                         | 0.958             | 162.1         |

- The proposed design has power similar to that LewisBerry's design, but the average sample number is slightly increased, by less than 5% under the alternative.
- However, the computation of the proposed design is much less intensive compared to that of LewisBerry's design, and the implementation is straightforward with one-step backward induction.
- The design of LewisBerry has a prespecified maximum number of blocks, while proposed design does not have such a restriction.