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Introduction

v

Bayesian adaptive design
» proposed for a comparative two-armed clinical trial using
decision-theoretic approaches.
» At each interim analysis, the decision to terminate or to
continue the trial is based on the expected loss function.
In Berry&Ho(1988) and Lewis&Berry(1994), Bayesian designs
are compared with frequentist group sequential designs using
decision-theoretic approaches.

Studies by Eales&Jesson(1992), Cressie&Biele(1994) and
Barber& Jennison(2002) search for optimal group sequential
designs under various settings using Bayesian
decision-theoretic approaches.

The maximum sample size/block size is predetermined for all
these methods.



Introduction

In this paper,
(1) Generalized the Bayesian decision-theoretic approach by
allowing the maximum sample size to be random
(2) Use loss functions that explicitly quantify the costs caused by
false-positive and false-negative decisions.
» maintain the desired frequentist properties such as type | and
[l error rates.
(3) Simultaneously consider efficacy, futility, and cost in the
decision making.



Bayesian Adaptive Design with One-Step Backward
Induction

» X7 : the treatment response
» Xc : the control response

> 2B; : the block size at each stage where B; is the sample size
for each treatment arm (i =1,2,...)

> XTi’)_(Ci : the observed means of the ith block for the two
arms.
> Let 6 be the parameter of interest, and let
X = )_(T,- — )_(C,. ~ F(.16), ffoooxdF(x\H) =0

» prior 7(0) with a prior mean of E(0|r) =0



Bayesian Adaptive Design with One-Step Backward
Induction

Ho:0<6y versus H;:0>0

» If & > 0, there is insufficient information to indicate a
preference for any one of the treatments.

» A : actions of accepting the null hypothesis.

> R : actions of rejecting the null hypothesis.

L(0.4) = 0, fO<b, L(6.R) = Ko, if0<0
T Ky, if 0> 6 7)o, if6>0



Bayesian Adaptive Design with One-Step Backward
Induction

» Let & = {Xi,..., Xj} define the accumulated data up to step j
» Define the o-algebra F; = o (X)),

E{L(0, AlF})} = Kipr(6 > 60| F})}

E{L(0, RIF})} = Kopr(6 < O1F))

» Given the data up to the jth stage, a critical region R;,

pr(0<0|F;)
R_{X pr6<90|.7-')—K0}J_12



Bayesian Adaptive Design with One-Step Backward
Induction

» K5 : the unit cost of enrolling a patient into the trial
> Lotop(Xj) = 2K ZJ B-+mm[E{L(0,A)|]—'j}, E{L(0, R)|F;}]

> Lcont( ) — 2K2 ZJJrl
(mm[E{L(é’ A)‘}—(j-i-l)}v E{L(0, R)|F(j+1) Y1 F5)



Bayesian Adaptive Design with One-Step Bakward
Induction

» To search for the optimal adaptive design that minimizes the
expected loss, use the following two-step strategy.

Step 1. If Lsrop(Xj) < Leont(&Xj), terminate the trial, and the
maximum block size is j. Then if the accumulated data &j is
in the rejection region R;, we conclude that the new
treatment is more effective than the control.

Step 2. If Lstop(Xj) > Leont(&Xj), continue to observe the (j 4 1)th
block and repeat Step 1 and 2.

» The total number of blocks to be observed in the trial,
denoted by M, P(M < c0|f) = 1. (by the martingale
convergence theorem)



Connections with the frequentist designs

» The design parameters, K;, (i = 0,1,2) allow us to control the
probabilities of type | and type Il errors.

> If 6o = 0, the probability of making a false-positive conclusion
at stage j is Pr(R;|0 = 0), where

r9<0X
Ry ={% S0 < 19} = (X1 pr(0 < 0])) <

— K0+K1}
» If all related density functions satisfy the regularity conditions,
7(0]X)) ~ N(éj,sjz) asymptotically.
» pr(6 < 0|&;) is asymptotically distributed as ®(—d;/s;),
where ® is the standard normal cdf.



Connections with the frequentist designs

v

Under 6 = 6o = 0, §;/s;j converges in distribution to
Z.(Hartigan, 1983, Ch.11) Therefore,
pr(0 < 01)) % &(2)
Since ®(Z) ~ U(0,1), rejection region F\’j/ under § =0 is,
pr(R;|0 = 0) = pr(pr(6 < 0]x;)|0 = 0) < KO'EKI)
- pr{tb(Z) — K0+K1} = K0+K1
For 0p > 0, R; shrinks as fly increases. Therefore
limsup;_, pr(R;|6 =0) < & +K1
If the overall sample size is sufficiently large, R; depends on
Ko/ K1
» For a given type | error rate,
Kg/Kl = (1 — a)/a, if we let Kl/(Ko + Kl) =

v

v

v



Connections with the frequentist designs

» High value of Ki implies that future patients might benefit
from a new effective treatment.

» However, the new treatment may be superseded within a few
years, which would reduce the 'value' of the treatment, Kj.

» It is difficult explicitly to build this concern prospectively into
a trial design.



Special Case 1: Noraml responses

Derive a strict uppder boundary for continuous outcomes with
a normal distribution.

Xi = X7, — Xc. ~ N(0,02/B;)

0 ~ N(6,02/Bg), where By can be interpreted as a 'sample
size' reflected by the prior information, Xo = 0

v

v

v

v

After data from block j are observed, 0|X; ~ n(J;, sj2) where,

6- = 724:.0 BiXi 5.2 = .U2
/ Zjizo Bi ’ J Z{':o Bi




Special Case 1: Normal responses

» Then rejection region R;, is given by

r(6<0|F;) —0;/sj)
Rj = {4 : ,fra?eopr) <@y ={x: Tt ®{(00-3,)/5] = 3
» Since % is a decreasing function of ¢;, and

o 5/5) O(=d;/s)  _
P Te(@-0)/5) — O N ei@-s)/57 = O
> Therefore, 3l¢; such that Rj = {X] : §; > ¢j} or, equivalently,

- L 0(=5/s) g =
¢j = arg{x: W "% =0}



Special Case 1: Normal responses

v

h=® YK /(Ko+ K1)}, It is interest to obtain h
corresponding to a given «

_ J; d nj—n
» Under the null 8 = 0, —;j ~ /\/(_U%’ JTO)
» The probability of rejecting the null hypotheses at the jth

interim analysis is

ho . /f:+ngd
pr(R)16 = 0) = pr(sy/5; > hlf = 0) = D"/}

¢{"”\F';7\/L':’f} increases when /n; < —ho /4, decreases when
Vhj > —ha/é

v



Special Case 1: Normal responses

When Vi < —ho /6,
» The function has maximum at ,/n; = —ha /4, therefore

ho\/Aj+nod v/ (h202—ngs2
5Up¢{ m } < d){ \/m }

» h202 — ngd? 2 0, as long as np < n;

» Therefore, hy = —(z2 + "2‘252)%
When /nj > —ha /6,
» since n; > ny, for j > 1, When /n; > —ho /§

haf+n05 ha+/ni+ngd
sgjpd’{ = P =)

» Therefore, hy = —Zl—aUVU"l;l”O_”O‘s



Special Case 1: Normal responses

For any given significance level «, we can determine Ky/Kj, based
on this upper bound:

Ko _ {{1-¢(h1)}/¢<h1), if /i1 < \/{(0/)?22 + o}
o)}/ (k). if A > A(0/0)722 + o}

with Ko/ Ki defined above,

suppr(R;j|lf =0) < o
J



Special Case 1: Normal responses

» The loss incurred in terminating the trial at the jth stage is
- . 5; 5
Lawop(X) = 26 Sy By + min[K {1~ &(~2)}, Kod(—2)
» The relevant predictive distribution of Xj 1 is
0.2
Xi1| ~ N(3j, 57+ 5)
» Compute the posterior mean and posterior variance of 6

recursively as

Siin — nj6j+Bjr1x41 2 . — o2
J+1 ni+Bjs1 7 AL T ni+Bia

» Then, the predicted loss of continuing and observing one more
block is,
Lcont( ) = 2K2 ZjJrl

A minl {1 - O(—22)}, Ko®(— L)) 2



Special Case 2: Binary responses

> X7.lpe ~ B(Bi,pt),  Xclpe ~ B(Bj, pc)
> p: ~ Beta(as, bt), pc ~ Beta(ac, bc)

» The difference in efficacy is § = p; — pc, and the density
function for € is

ﬂ(e‘ah bta dc, bc)

B f—le q(0 + x, at, bt)q(x, ac, bc)dx, if—1<6<0,
01_9 q(0 + x, at, br)q(x, ac, bc)dx, if 0<6<1

where g(x, a, b) is the density function of the beta distribution.



Special Case 2: Binary responses

> At the end of the jth stage, the sufficient statistic denoted by

_ I Y/ .
(st;» fr;» S¢;» t;), where sy + fr, = s¢, + fo; = > i1 B
> s, fy; © the total numbers of successes and failures observed

on the treatment arm up to stage j

Sc;» fc; © the total numbers of successes and failures observed
on the control arm up to stage j



Special Case 2: Binary responses

» The expected losses for the two decisions, A and R, are
1
E{L(0,A)|X;} = K1 feo w(@\atj, btj, ag, bcj)de7
E{L(ea R)|‘X_‘/} = KO fi)]_ 7T(9|3tj, bl’ja aCj7 bcj)de
where
atj = at +Stj7 btj = bt + ftj) aCj = dc + st) ij = bt + fCJ
» Transform the integrals,
E{L(0,A) X} = Ki [ 7 a(x, ag, bg ) {1 — Q6 + x, ay, by,) }dx
E{L(8,R)|X;} = Ko fiy a(x, ac;, be) Q(x, ay;, by, )dx
where Q(., a, b) is the cumulative distribution function of
Beta(a, b)



Special Case 2: Binary responses

» The predictive distribution of Stii10 Sciin given St;» Sc;

pr(sfj+1v SCj+1 ’51“}'7 SCJ') =
( Bj+1 )( Bj+1 )5(afj+1’bfj+1) Blag,y b )
St 1 —St;/ \s 1 =S/ Blag;,by;) Bac;,bc;)
> It is possible to derive an absolute upper boundary for binary
outcomes to control the type | error rate, as in the case of
normal outcomes.




Simulation

» Through Monte Carlo simulations, compare the performance
of the proposed design with the existing group sequential
designs, including

(1) the frequentist designs of Pocock (1977)
(2) O'BrienFleming (1979)
(3) the adaptive self-designing trial of Shen Fisher (1999)

» Pocock and O'Brien-Fleming trials predetermine the
maximum sample size.

» 'Bayes Adapt I : Ky/Kj is determined by the equation on p.16

» 'Bayes Adapt II' : Ky/Kj is determined by the equation on
p.10



Simulation

Table 1: Monte Carlo simulation. The comparison of power and average sample
number between the Bayesian designs and other group sequential designs with
one-sided o = 0025, and true 0 =0 at null and 0 =0-5 under the alternative

Design

Pocock

OBF
Self-designing
Bayes Adapt I
Bayes Adapt 11
Pocock

OBF
Self-designing
Bayes Adapt [
Bayes Adapt II
Pocock

OBF
Sell-designing
Bayes Adapt I
Bayes Adapt II
Pocock

OBF
Sell-designing
Bayes Adapt [
Bayes Adapt 11

07

&

0-025
0-022
0012
0-014
0-016
0-025
0-024
0-013
0-012
0-018
0-026
0-025
0-013
0013
0-020
0-025
0024
0-014
0-015
0-022

B=

ASN,

1636
686
844
497
al:d

1056
417
625
458
478
706
350
519
420
453
474
267
439
398
427

6

1=
0984
0-985
0911
0934
0938
0911
0929
0-888
0921
0-930
0-766
0-810
0-836
0-905
0914
0-598
0-670
0-761
0-889
0-907

ASNu
744
$4-4
870
727
7240
666
655
785
69-4
682
558
508
703
666
646
27
381
613
639
616

&
0-025
0-025
0010
0012
0017
0-024
0-024
0-014
0016
0017
0-025
0214
0014
0013
0020
0-026
0023
0014
0-015
0-021

B=

ASN,

1563
709
929
593
604

1098
497
714
544
549
787
373
599
492
513
476
289
493
459
489

8

1=
0977
0984
0931
0-959
0-961
0924
0937
0918
0946
0951
0-817
0-848
0-869
0928
0-942
0-614
0-668
0772
0920
0932

ASNy
788
83-7
90-0
79-5
783
717
69-1
839
755
737
62-2
559
74-6
717
69-7
452
399
651
68-9
66-1

ASN, and ASN are average sample numbers under # = 0 and 0 = 0-5, respectively. 0BF, O’Brien—
Fleming design. Bayes Adapt I, K,/K, is determined by formula (2-8); Bayes Adapt I, Ko/K
satisfies the equation K, (K, + K;) = «; for both designs, K,/K, =0-1*B3>



Simulation

» 'Bayes Adapt | is more conservative than 'Bayes Adapt II'.
» The type 1 error rates of the proposed Bayesian designs are
similar to that of the self-designing trial, but no additional

futility stopping rule is required.
» The frequentist group sequential designs with the fixed
maximum sample sizes lead to a substantial loss of power.

» The Bayesian-designs hold advantages over the self-designing
trial in terms of both power and average sample number.



Simulation

(a) (b) (c)
04 04 04
o (=3 o
E E E
Z 02 Z 02 3 02
00 0-0 004 L
2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
No. of blocks

No. of blocks No. of blocks
Fig. 1: Monte Carlo simulation. The histogram of the number of blocks as relative frequencies for (a) the

Pocock design, (b) the O'Brien—Fleming design and (¢) the Bayesian adaptive design, with @ =06, § =06
and B =12 for all the designs.

» Without a constraint on the maximum number of blocks, more
than 75% of the trials using the proposed adaptive design are
terminated with the number of blocks being four or fewer.



Simulation

Table 2: Monte Carlo simulation. The comparison of power and average

sample number between the proposed Bayesian optimal design and

fixed sample design for binary responses: priors are Be(1,1), é =04,

p=p.=05 for Hy, p,=05+0/2 and p.=05—0/2 for H,. The ratio

Ko /K, is 19, which satisfies the equation K,/(K, + K,)=u for « =005,
and the ratio K, /K, is 0-005

Proposed Bayesian design 11 Fixed sample design
B=16 B=24

f prireject H,) ASN prireject H,) ASN prireject H,) ASN
040 0921 460 0973 550 0-906 46
0-36 0-874 504 0-945 57-3 0-835 46
032 0-801 523 0-875 60-9 0-741 46
028 0710 540 0-812 644 0-631 46
0-00 0-047 402 0-047 562 0-050 46

ASN, average sample number.



Simulation

Table 3: Monte Carlo simulation. The comparison of power and average
sample number between the proposed Bayesian optimal design and the
Lewis—Berry Bayesian design for binary responses: p,=p. =05 for Ho,
pr=05+6/2 and p.=05—3/2 for H,. The ratio K,/K, is 19, which
satisfies the equation K,/(K, + K,)=o for «=005 K,/K;=0005 for

Priors i B
Be(1,1) 04 16
02 16
Be(2,2) 04 16
02 16

» The proposed design has power similar to that LewisBerry's
design, but the average sample number is slightly increased,

Proposed Bayesian design II

3
0-047
0-030

0-030
0-026

ASN,
402
1314

406
125-5

1—p
0921
0926
0942
0917

ASN
460
1717
486
1719

é
0-039
0-035
0-027
0-034

by less than 5% under the alternative.

» However, the computation of the proposed design is much less
intensive compared to that of LewisBerry's design, and the
implementation is straightforward with one-step backward

induction.

» The design of LewisBerry has a prespecified maximum number
of blocks, while proposed design does not have such a

restriction.

6 =04, and K,/K, =000003 for é =02

Lewis-Berry design

ASN,
421
1559

383
1523

1-f
0946
0960
0907
0958

ASN,
443
161-4
462
1621



