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Introduction

I Bayesian adaptive design
I proposed for a comparative two-armed clinical trial using

decision-theoretic approaches.
I At each interim analysis, the decision to terminate or to

continue the trial is based on the expected loss function.

I In Berry&Ho(1988) and Lewis&Berry(1994), Bayesian designs
are compared with frequentist group sequential designs using
decision-theoretic approaches.

I Studies by Eales&Jesson(1992), Cressie&Biele(1994) and
Barber&Jennison(2002) search for optimal group sequential
designs under various settings using Bayesian
decision-theoretic approaches.

I The maximum sample size/block size is predetermined for all
these methods.



Introduction

In this paper,

(1) Generalized the Bayesian decision-theoretic approach by
allowing the maximum sample size to be random

(2) Use loss functions that explicitly quantify the costs caused by
false-positive and false-negative decisions.

I maintain the desired frequentist properties such as type I and
II error rates.

(3) Simultaneously consider efficacy, futility, and cost in the
decision making.



Bayesian Adaptive Design with One-Step Backward
Induction

I XT : the treatment response

I XC : the control response

I 2Bi : the block size at each stage where Bi is the sample size
for each treatment arm (i = 1, 2, ...)

I X̄Ti
, X̄Ci

: the observed means of the ith block for the two
arms.

I Let θ be the parameter of interest, and let

Xi = X̄Ti
− X̄Ci

∼ F (.|θ),
∫∞
−∞ x dF (x |θ) = θ

I prior π(θ) with a prior mean of E (θ|π) = δ



Bayesian Adaptive Design with One-Step Backward
Induction

H0 : θ ≤ θ0 versus H1 : θ > 0

I If θ > 0, there is insufficient information to indicate a
preference for any one of the treatments.

I A : actions of accepting the null hypothesis.

I R : actions of rejecting the null hypothesis.

L(θ,A) =

{
0, if θ ≤ θ0
K1, if θ > θ0

L(θ,R) =

{
K0, if θ ≤ 0

0, if θ > 0



Bayesian Adaptive Design with One-Step Backward
Induction

I Let Xj = {X1, ...,Xj} define the accumulated data up to step j

I Define the σ-algebra Fj = σ(Xj),

E{L(θ,A|Fj)} = K1pr(θ > θ0|Fj)}

E{L(θ,R|Fj)} = K0pr(θ ≤ 0|Fj)

I Given the data up to the jth stage, a critical region Rj ,

Rj = {Xj :
pr(θ≤0|Fj )
pr(θ≤θ0|Fj )

≤ K1
K0
}, j = 1, 2, ...



Bayesian Adaptive Design with One-Step Backward
Induction

I K2 : the unit cost of enrolling a patient into the trial

I Lstop(Xj) = 2K2
∑j

i=1 Bi +min[E{L(θ,A)|Fj},E{L(θ,R)|Fj}]
I Lcont(Xj) = 2K2

∑j+1
i=1 Bi +

E(min[E{L(θ,A)|F(j+1)},E{L(θ,R)|F(j+1)}]|Fj)



Bayesian Adaptive Design with One-Step Bakward
Induction

I To search for the optimal adaptive design that minimizes the
expected loss, use the following two-step strategy.

Step 1. If Lstop(Xj) ≤ Lcont(Xj), terminate the trial, and the
maximum block size is j . Then if the accumulated data Xj is
in the rejection region Rj , we conclude that the new
treatment is more effective than the control.

Step 2. If Lstop(Xj) > Lcont(Xj), continue to observe the (j + 1)th
block and repeat Step 1 and 2.

I The total number of blocks to be observed in the trial,
denoted by M , P(M <∞|θ) = 1. (by the martingale
convergence theorem)



Connections with the frequentist designs

I The design parameters, Ki , (i = 0, 1, 2) allow us to control the
probabilities of type I and type II errors.

I If θ0 = 0, the probability of making a false-positive conclusion
at stage j is Pr(Rj |θ = 0), where

Rj = {Xj :
pr(θ≤0|Xj )
pr(θ>0|Xj )

≤ K1
K0
} = {Xj : pr(θ ≤ 0|Xj) ≤ K1

K0+K1
}

I If all related density functions satisfy the regularity conditions,

π(θ|Xj) ∼ N(δj , s
2
j ) asymptotically.

I pr(θ ≤ 0|Xj) is asymptotically distributed as Φ(−δj/sj),
where Φ is the standard normal cdf.



Connections with the frequentist designs

I Under θ = θ0 = 0, δj/sj converges in distribution to
Z.(Hartigan, 1983, Ch.11) Therefore,

pr(θ ≤ 0|Xj)
d→ Φ(Z )

I Since Φ(Z ) ∼ U(0, 1), rejection region R
′
j under θ = 0 is,

pr(R
′
j |θ = 0) = pr(pr(θ ≤ 0|Xj)|θ = 0) ≤ K1

K0+K1
)

→ pr{Φ(Z ) ≤ K1
K0+K1

} = K1
K0+K1

I For θ0 > 0, Rj shrinks as θ0 increases. Therefore,

lim supj→∞ pr(Rj |θ = 0) ≤ K1
K0+K1

I If the overall sample size is sufficiently large, Rj depends on
K0/K1

I For a given type I error rate, α

K0/K1 = (1− α)/α, if we let K1/(K0 + K1) = α



Connections with the frequentist designs

I High value of K1 implies that future patients might benefit
from a new effective treatment.

I However, the new treatment may be superseded within a few
years, which would reduce the ’value’ of the treatment, K1.

I It is difficult explicitly to build this concern prospectively into
a trial design.



Special Case 1: Noraml responses

I Derive a strict uppder boundary for continuous outcomes with
a normal distribution.

I Xi = X̄Ti
− X̄Ci

∼ N(θ, σ2/Bi )

I θ ∼ N(δ, σ2/B0), where B0 can be interpreted as a ’sample
size’ reflected by the prior information, X0 = δ

I After data from block j are observed, θ|Xj ∼ n(δj , s
2
j ) where,

δj =
∑j

i=0 BiXi∑j
i=0 Bi

, s2j = σ2∑j
i=0 Bi



Special Case 1: Normal responses

I Then rejection region Rj , is given by

Rj = {Xj :
pr(θ≤0|Fj )
pr(θ≤θ0|Fj )

≤ K1
K0
} = {Xj :

Φ(−δj/sj )
1−Φ{(θ0−δj )/sj} ≤

K1
K0
}

I Since
Φ(−δj/sj )

1−Φ{(θ0−δj )/sj} is a decreasing function of δj , and

sup
δj

Φ(−δj/sj )
1−Φ{(θ0−δj )/sj} =∞, inf

δj

Φ(−δj/sj )
1−Φ{(θ0−δj )/sj} = 0

I Therefore, ∃!cj such that Rj = {Xj : δj ≥ cj} or, equivalently,

cj = arg{x :
Φ(−δj/sj )

1−Φ{(θ0−δj )/sj} −
K1
K0

= 0}



Special Case 1: Normal responses

I h = Φ−1{K1/(K0 + K1)}, It is interest to obtain h
corresponding to a given α

I Under the null θ = 0, − δj
sj
∼ N(− n0δ

σ
√
nj
,
nj−n0
nj

)

I The probability of rejecting the null hypotheses at the jth
interim analysis is

pr(Rj |θ = 0) = pr(δj/sj > h|θ = 0) = Φ{hσ
√
nj+n0δ

σ
√

nj−n0
}

I Φ{hσ
√
nj+n0δ

σ
√

nj−n0
} increases when

√
nj ≤ −hσ/δ, decreases when

√
nj ≥ −hσ/δ



Special Case 1: Normal responses

When
√
nj ≤ −hσ/δ,

I The function has maximum at
√
nj = −hσ/δ, therefore

sup
nj

Φ{hσ
√
nj+n0δ

σ
√

nj−n0
} ≤ Φ{

√
(h2σ2−n0δ2

σ
√

nj−n0
}

I h2σ2 − n0δ
2 ≥ 0, as long as n0 ≤ nj

I Therefore, h1 = −(z2α + n0δ2

σ2 )
1
2

When
√
nj > −hσ/δ,

I since nj ≥ n1, for j ≥ 1, When
√
n1 > −hσ/δ

sup
nj

Φ{hσ
√
nj+n0δ

σ
√

nj−n0
} ≤ Φ{hσ

√
n1+n0δ

σ
√
n1−n0

}

I Therefore, h2 = z1−ασ
√
n1−n0−n0δ
σ
√
n1



Special Case 1: Normal responses

For any given significance level α, we can determine K0/K1, based
on this upper bound:

K0
K1

=

{
{1-Φ(h1)}/Φ(h1), if

√
n1 ≤

√
{(σ/δ)2z2α + n0}

{1-Φ(h2)}/Φ(h2), if
√
n1 >

√
{(σ/δ)2z2α + n0}

with K0/K1 defined above,

sup
j
pr(Rj |θ = 0) ≤ α



Special Case 1: Normal responses

I The loss incurred in terminating the trial at the jth stage is

Lstop(Xj) = 2K2
∑j

i=1 Bi + min[K1{1−Φ(− δj
sj

)},K0Φ(− δj
sj

)]

I The relevant predictive distribution of Xj+1 is

Xj+1|Xj ∼ N(δj , s
2
j + σ2

Bj+1
)

I Compute the posterior mean and posterior variance of θ
recursively as

δj+1 =
njδj+Bj+1xj+1

nj+Bj+1
, s2j+1 = σ2

nj+Bj+1

I Then, the predicted loss of continuing and observing one more
block is,
Lcont(Xj) = 2K2

∑j+1
i=1 Bi

+
∫ +∞
−∞ min[K1{1−Φ(− δj+1

sj+1
)},K0Φ(− δj+1

sj+1
)]dΦ{ xj+1−δj

(s2j +σ
2/Bj+1)2

}



Special Case 2: Binary responses

I XTi
|pt ∼ B(Bi , pt), XCi

|pc ∼ B(Bi , pc)

I pt ∼ Beta(at , bt), pc ∼ Beta(ac , bc)

I The difference in efficacy is θ = pt − pc , and the density
function for θ is

π(θ|at , bt , ac , bc)

=

{∫ 1
−θ q(θ + x , at , bt)q(x , ac , bc)dx , if− 1 < θ < 0,∫ 1−θ
0 q(θ + x , at , bt)q(x , ac , bc)dx , if 0 < θ < 1

where q(x , a, b) is the density function of the beta distribution.



Special Case 2: Binary responses

I At the end of the jth stage, the sufficient statistic denoted by

(stj , ftj , scj , tcj ), where stj + ftj = scj + fcj =
∑j

i=1 Bi

I stj , ftj : the total numbers of successes and failures observed
on the treatment arm up to stage j

I scj , fcj : the total numbers of successes and failures observed
on the control arm up to stage j



Special Case 2: Binary responses

I The expected losses for the two decisions, A and R, are

E{L(θ,A)|Xj} = K1

∫ 1
θ0
π(θ|atj , btj , acj , bcj )dθ,

E{L(θ,R)|Xj} = K0

∫ 0
−1 π(θ|atj , btj , acj , bcj )dθ

where

atj = at + stj , btj = bt + ftj , acj = ac + scj , bcj = bt + fcj
I Transform the integrals,

E{L(θ,A)|Xj} = K1

∫ 1−θ

0
q(x , acj , bcj ){1− Q(θ0 + x , atj , btj )}dx

E{L(θ,R)|Xj} = K0

∫ 1

0
q(x , acj , bcj )Q(x , atj , btj )dx

where Q(., a, b) is the cumulative distribution function of
Beta(a, b)



Special Case 2: Binary responses

I The predictive distribution of stj+1 , scj+1 given stj , scj ,

pr(stj+1 , scj+1 |stj , scj ) =( Bj+1
stj+1
−stj

)( Bj+1
scj+1

−scj

)β(atj+1
,btj+1

)

β(atj ,btj )

β(acj+1
,bcj+1

)

β(acj ,bcj )

I It is possible to derive an absolute upper boundary for binary
outcomes to control the type I error rate, as in the case of
normal outcomes.



Simulation

I Through Monte Carlo simulations, compare the performance
of the proposed design with the existing group sequential
designs, including

(1) the frequentist designs of Pocock (1977)
(2) O’BrienFleming (1979)
(3) the adaptive self-designing trial of Shen Fisher (1999)

I Pocock and O’Brien-Fleming trials predetermine the
maximum sample size.

I ’Bayes Adapt I’ : K0/K1 is determined by the equation on p.16

I ’Bayes Adapt II’ : K0/K1 is determined by the equation on
p.10



Simulation



Simulation

I ’Bayes Adapt I’ is more conservative than ’Bayes Adapt II’.

I The type 1 error rates of the proposed Bayesian designs are
similar to that of the self-designing trial, but no additional
futility stopping rule is required.

I The frequentist group sequential designs with the fixed
maximum sample sizes lead to a substantial loss of power.

I The Bayesian-designs hold advantages over the self-designing
trial in terms of both power and average sample number.



Simulation

I Without a constraint on the maximum number of blocks, more
than 75% of the trials using the proposed adaptive design are
terminated with the number of blocks being four or fewer.



Simulation



Simulation

I The proposed design has power similar to that LewisBerry’s
design, but the average sample number is slightly increased,
by less than 5% under the alternative.

I However, the computation of the proposed design is much less
intensive compared to that of LewisBerry’s design, and the
implementation is straightforward with one-step backward
induction.

I The design of LewisBerry has a prespecified maximum number
of blocks, while proposed design does not have such a
restriction.


